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Simulations of the Hubbard Model 

J.  E. H i r s c h  I 

We discuss results of simulations of the Hubbard model of interacting electrons 
on a lattice. We start with a brief discussion of methodology and point out some 
of the outstanding problems. We then discuss results of simulations of the model 
in three, two, and one dimension, particularly in connection with its magnetic 
and superconducting properties. We conclude with a brief discussion of future 
directions. 

KEY WORDS: Magnetism; superconductivity; self-consistent field; Heisen- 
berg model. 

1. I N T R O D U C T I O N  

Electrons in solids can quite generally be described in a tight binding for- 
mulation, and this formulat ion becomes particularly useful for "narrow- 
band"  solids, where the kinetic energy of the electrons is comparable  or 
smaller than their interaction energy on the average. The simplest tight- 
binding Hamil tonian  describing interacting electrons is the Hubba rd  
model, (1) defined by 

( i , j )  i gff 

4- where ci~(cio ) creates (destroys) an electron of spin a at site i. This 
Hamil tonian takes into account  only one a tomic orbital per site and 
neglects interactions of  electrons other  than at the same site. The hopping  
term t~ and on-site repulsion U can be expressed in terms of  matrix 
elements of the kinetic energy opera tor  and Cou lomb  interaction in the 
basis of  atomic orbitals. One  can obtain  more  realistic Hamil tonians  by 
allowing for more  distant interactions between electrons (extended Hub-  
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bard model) and by considering more than one band (degenerate Hubbard 
model, Anderson model, etc.). Here we will limit ourselves to the form of 
equation (1) and only briefly consider the effect of nearest-neighbor 
interactions at the end. 

Even in its simplest form (1), the Hubbard Hamiltonian. is thought to 
be useful to describe collective effects in narrow band solids such as 
magnetism, metal-insulator transition, and superconductivity; see, for 
example, Ref. 2. Because no exact solution of the model exists (except for 
some results in one dimension(3/), a variety of approximate methods have 
been used to study it, (2~ whose reliability is unknown. Only recently have 
we started to learn about this model from Monte Carlo simulations. 
Besides giving information about the physics of the model, these 
calculations should serve as useful benchmarks against which approximate 
analytic methods can be tested. 

The properties of the model (1) can in principle depend on the 
detailed form of the band structure (determined by to. ) , the strength of the 
Coulomb interaction U, the band filling, determined by the chemical poten- 
tial /~, and the dimensionality. The simplest nontrivial case corresponds 
to half-filled band (one electron per site, or p = 1) and nearest-neighbor 
hopping only, for which # = U/2. For that case the dominant instability is 
expected to be antiferromagnetism if U > 0. 

2. M E T H O D O L O G Y  

We start with a path-integral formulation of the partition function 

L L 

Z = t r e  ~ " = t r  l~ e ~ " ~ t r  l~ e - ~ H ~  (2) 
i = 1  i - - 1  

where H o is the kinetic energy (first term in (1)) and Hu the interaction 
and chemical potential terms (last two terms). Choosing A ~ 2 U t  = .125 gives 
a negligible systematic error due to the breakup in (2). In one spatial 
dimension, inserting complete sets of intermediate states in the fermion 
occupation number representation between time slices leads to a sum of 
only positive terms that can be evaluated by standard Monte Carlo 
methods, taking proper account of the local spin and charge conservation 
laws (world line algorithm). (4) In higher dimensions, however, such a 
procedure leads to roughly the same number of positive and negative terms 
at low temperatures due to the fermion anticommutation relations, (4) and 
no Monte Carlo method is known to deal efficiently with this situation. 

To make further progress we eliminate the electron-electron interac- 
tion term introducing auxiliary variables. Because the occupation number 
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nir can only take the values 0 or l, this can be done by introducing one 
Ising variable per site (5) 

e ~u~t~  + (~u/2)(,,T + ~,~) = �89 tr~ e ;~c~(nst - ~i;) (3) 

cosh 2 = e ~u/2 (4) 

so that 

Z =  tr tr~ e ~Hot e;~Z,~U)~,n e -~H~ e ~Z,~,U)~,~ (5) 
l ~ t - l =  1 

Physically, the Ising variables represent the z-component of the electron 
spin at each site. Correlation functions of the electron spins and of the Ising 
variables are related by (5) 

1 
( [niT(r ) -- ni+(r)] [niT(O) -- nil(O)] ) = 1 -- e 3~u (ai(r) aj(O)) (6) 

(except for i=j, r = 0 ) .  We can now trace analytically over the fermion 
degrees of freedom in (5), since everything is bilinear in fermions. After per- 
forming this trace, the resulting theory has only two states per site (the 
states of the Ising spin) instead of four as the original Hubbard model. 
That is, our procedure can be interpreted as an exact renormalization- 
group transformation whereby half of the degrees of freedom (charge) are 
integrated out and half (spin) remains. (In fact, one can also perform a par- 
tial elimination of the charge degrees of freedom through a generalization 
of the transformation Eq. (3), that smoothly interpolates between the world 
line formulation and the Ising formulation; See Ref. 6.) As a consequence of 
this transformation, the sign problems that occurred in the world line for- 
mulation are completely eliminated in the half-filled band sector (the 
weights are positive for all a configurations(7/), and negative signs do not 
cause severe problems at other band fillings, either./8) 

There are two ways to take the trce over fermion degrees of freedom in 
(5). In a space-only formulation one obtains (9) 

Z=tr~detN[l+ []e~KeV~]detNIl+ He~KeV~ ] 
l = 1  l = 1  

- tr~ detN ~r T detN 2~r~ (7) 

with 

(K)ij = - t  o (8a) 

(eV?)ij=e ~'(n cr _+1 (8b) 
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and 214~ an N x  N matrix ( N =  number of spatial sites). In a space-time for- 
mulation one obtains 

Z = tr~ detN.LM T detN, L M,  

with M~ an (N. L) x (N. L) matrix which, written out in the time direction, 

Ms = 

looks like 

eAr ~ 0 0 " .  

- 1  e~r 0 " "  

0 -1  
(9) 

If we expand the kinetic energy term or do a checkerboard breakup, (4) M~ 
is a sparse matrix in space-time, while M~ is a full matrix in space only. 

To update the a fields in a Monte Carlo simulation one needs the 
ratio of fermion determinants after and before a spin-flip, which can be 
written as (9) 

de t (m + 6M) 
= det(1 + m -~ 6M) (10) 

det M 

which can be easily obtained if M - I  is known. Because M is nonpositive 
definite, to use stochastic or iterative methods to obtain the inverse one 
needs to deal with the inverse of M + M ,  i.e. 

M-1  = ( M + M ) - I M  + (11) 

Unfortunately, it turns out that the eigenvalue spectrum of M + M  exhibits 
very small eigenvalues at low temperatures. ~1~ For  the noninteracting 
theory, the smallest eigenvalue of M + M  goes as 

as function of the number of time slices L. For  the interacting case, we find 
numerically 

2rain ~ e -L1/2 (13) 

and for the particular case to=O this can be proved analytically using 
renormalization-group argumentsJ 1~ Equation (13) shows that the 
smallest eigenvalue goes to zero exponentially fast, making it very difficult 
to obtain ( M + M )  1 by stochastic or iterative methods at low tem- 
peratures. Figure 1 shows an example of the behavior of '~min ve r sus  L for 
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Fig. 1. Behavior of the smallest eigenvaluc of M+M, 2rnin , v e r s u s  temperature (L-fl/Ar) for 
ArU=0.5  (upper curve) and AzU=O (lower line). Note the enormous increase in J.~ik 'z 
produced by the random fields. The number of iterations needed to get convergence in an 
iterative calculation of M+M is ~2miln . 

fixed Ar. This phenomenon occurs because of a singularity in the density of 
states of the matrix M + M  at low energies caused by the random field con- 
figurations, and is related to the behavior found by Dyson long ago in a 
random chain of oscillators.(ll) 

This discussion shows the difficulty in obtaining the inverse of M by 
nondeterministic methods at low temperatures. We believe the situation is 
not hopeless because another feature of the matrix M + M  is that the eigen- 
vectors become localized in the presence of the random field I1~ so that a 
carefully arranged expansion starting from the inverse of a cluster can con- 
verge rapidly. This is presently being investigated. 

In the absence of an efficient nondeterministic method to compute the 
inverse of the matrix, it is clearly advantageous to turn to the space-only 
formulation where the matrix M is smaller (Nx N), even through non- 
sparse, and use a deterministic method. Blankenbecler, Scalapino and 
Sugar (9) have shown how one can obtain the inverse after flipping a spin in 
terms of the inverse before flipping the spin in O(N 2) operations, (12) 
through the relation 

(~r, 1)~= ( ~  1)~+ (2~-l),ktk(2~f)~l (14) 
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Fig. 2. Staggered magnetization squared in the z direction (a) and in the x y  plane (b) versus 
Monte Carlo sweeps. U =  6, /7 = 1.33, 43 lattice. Note the much larger fluctuations in the z 
direction. 
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where tk is the single-site t matrix, which is easily obtained. This algorithm 
then requires N3L operations per sweep, i.e., is very time-consuming, but it 
produces reliable results. An additional difficulty is that the method 
becomes rapidly unstable at low temperatures and high precision is needed. 
We have used this approach to study the Hubbard model in two and three 
dimensions, and the world line formulation in one dimension. In the 
following sections we discuss some results. 

A final technical point concerns the choice of quantities to measure. 
The Hubbard model is rotationally invariant in spin space, and one might 
think that it is inconsequential which direction in spin space one chooses to 
measure averages. However, the transformation (3) breaks spin-rotational 
invariancc, and while it is restored for the averages on tracing over ~r, it 
does make a big difference for the variance. As an example, Fig. 2 shows the 
staggered magnetization measured in the z direction and in the xy  plane. It 
can be seen that the fluctuations for measurements in the xy  plane are 
significantly smaller. This was found to be the case for all spin-dependent 
quantities for all cases studied. 

3. RESULTS IN 3D 

We have recently performed simulations of the half-filled Hubbard 
model in three spatial dimensions for U~< 12 and cubic lattices of size 43 
and 63. A typical simulation takes 1 Cray hr on a 43 lattice and 20 Cray hr 
on a 63. Figure 3 shows the local magnetic moment 

< s~ > = �88 (rot - n~+)~ > (15) 
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g. 

Fig. 3. 
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i 2. 5 4 

T/t  
Local magnetic moment  (15) versus temperature for 3-D Hubbard  model (4 3 lattice). 

The error in the MC data  is smaller than the points. 
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versus temperature for various U. This quantity is almost independent of 
lattice size. For U--0  and U =  oc the local moment is temperature- 
independent and equal to 3 and 3, respectively. For intermediate U it 
increases slowly as T decreases as the electrons become more localized and 
levels off at low T. For U = 4 and 6 a maximum can actually be seen. For 
U =  12 (bandwidth) the local moment at low T is quite close to the U = oe 
limit (perfectly localized spins). 

Figure 4 shows spin-spin correlation functions versus U for a fixed low 
temperature (fi=0.5). The system clearly shows antiferromagnetic 
correlations ((SiSj)<0 for i,j nearest and third-nearest neighbors, and 
(SiSj) > 0 for next-nearest neighbors). The strongest occur around U,~ 10. 
For large U it is expected that antiferromagnetism is suppressed, since the 
system becomes equivalent to a Heisenberg antiferromagnet 

H=J ~ ~,.% (16) 
( i , j )  

and the exchange coupling J =  t2/U decreases as U increases. For small U 
one expects antiferromagnetism to increase with U, for example, from 

0.t 

/ x  

-Ctt 
[in 

Fig. 4. Sp in - sp in  cor re la t ion  funct ions  versus U for 3-D H u b b a r d  model ,  fl = 2 (4 3 latt ice):  
nn = neares t -ne ighbor ,  nnn  = next -neares t  neighbor ,  3nn = th i rd  neares t  neighbor .  
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Fig. 5. (a) Magnetic susceptibility by ;( versus temperature for U = 0  (full line), U = 2  (s 
U = 4  (-), U = 6  (O) and U = 8  (X). (b) RPA predictions. 



8 5 0  Hirsch 

mean-field theory, The fact that maximum antiferromagnetism occurs for 
U ~ 10, however, is new information that would be very difficult to obtain 
through analytic methods since it is an intermediate coupling regime. 

Figure 5 shows the magnetic susceptibility for various values of U, and 
also the predictions of the random phase approximation (RPA). The 
susceptibility is enhanced by the Hubbard interaction but much less than 
what is predicted by RPA. We also find here that the enhancement is 
largest for U ~  10, and a larger U starts to suppress Z (not shown) while 
the RPA predicts a continuous enhancement with U. 

The largest effect of the interaction is seen in the magnetic structure 
factor and susceptibility for wavevector q = ( n ,  n, n). As an example, 
Figure 6 shows )~(n) as a function of T for U =  8, which starts to increase 
rapidly for T <  1. At low temperatures the results for 2 3, 4 3, and 6 3 size lat- 
tices start to differ significantly, indicating that the system is developing 
long-rate antiferromagnetic order. 

To determine the transition temperature T c and the character of the 
transition as a function of U one could do a finite-size scaling analysis. 

IO 
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0 i i t ~i '  , ~ , 
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T 

Fig. 6. Spin susceptibility at wave vector q = (~, ~z, ~) versus temperature for U= 8 and lat- 

tice sizes 23(X), 43(0 ), and 63(X). For the 23 lattice, t is taken to be 21/2 instead of 1. Results 
for the three lattice sizes are indistinguishable for T~> 1. 
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Because we are limited to small lattices at present, however, this is a dif- 
ficult proposition. Instead, we have used a method originally introduced by 
Binder (13) in a study of the classical Heisenberg model, effective field boun- 
dary conditions. The idea is to solve exactly (by simulations) for a small 
cluster embedded in an effective radium to be determined self-consistently. 
In a mean-field decoupling scheme we have, for sites in the effective 
medium 

A z U  
exp - A ~  Uni t  ni~ + -- ) - -  (nit + ni~ ) = exp hi(ni~ - ni+) (17) 

with 

h, = A~U(n,~> ( - 1 ) ~  = ( - 1 ) ' h  (is) 
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Fig. 7. Magnetization versus staggered field at the boundary for a three-site cluster embed- 
ded in a four-site cluster; U= 4, A~ = 0.125. A self-consistent nonzero solution is obtained for 
L~>25 or fl~> 3.125. 
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while for sites inside the cluster 

A z U  1 
exp - A z U n i ~ n i ,  + T (nit + n~,) = ~ tr.  exp 2a(niT - nil)  (19) 

We do the sum over as by simulations inside the cluster, while outside we 
perform the decoupling (17). The mean field hi is determined by condition 
(18), where (ni~) is the magnetization inside the cluster. 

Figures 7 and 8 show results for the staggered magnetization 

m : ~ ( - 1) i (niT -- nit ) 
i 

in a three-sote cluster embedded in a four-site cluster versus the mean field 
h for U = 4  and U=8.  As T is lowered, a self-consistent solution is 
obtained. For the larger U, in particular, it can be seen that the curve is S- 
shaped, which is indicative of a first-order transition. 
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Fig. 8. Same as Fig. 7 for U =  8 and  At  = 0.0625. 

0.6 



Simula t ions  of the  Hubbard  M o d e l  853 

As a check on the effective field boundary condition method, we have 
applied it to the three-dimensional q-state Potts model using the same size 
clusters as in the Hubbard simulation. (14) The results clearly show a con- 
tinuous transition for q = 2 (only one nonzero intersection in the m versus 
h curve) and a first-order transition for q > 2, in accordance with known 
behavior. (15) It should be noted that from straight Monte Carlo simulations 
on these size lattices (43 and 63 ) it is not possible to decide that the 
transition is continuous for q = 2 and first-order for q = 3. 

We have not performed a detailed analysis of the size dependence of 
the results with effective field boundary conditions, but estimate that our 
results could overestimate To up to 20 %. For  comparison, Binder's results 
for the 3-D Heisenberg model on a 43 lattice overestimate the known Tc by 
14%, and our results for the q =  3 Potts model by 23%. 

Figure 9 shows the results for the critical temperature obtained in this 
fashion as a function of U. The RPA calculation (mean field) gives a 
rapidly increasing Tc with U; for large U, we plot the predictions of high 
temperature expansions for the S= �89  Heisenberg model(161; here, T~ 
decreases as U increases as Tc~  3.36 t2/U, due to the decrease in the 
exchange coupling J (16). The Monte Carlo results show that Tc peaks 
around U ~  10, in accordance with the results for the spin-spin correlation 
functions. 

An interesting feature of Fig. 9 is that the values of To for the Hubbard 
model at large U are well above the Heisenberg model predictions. 

fc 
t Tc(RPA) 

2 4 6 8 I0 
T 

- {  

J i I >  
i2 14 16 

Fig. 9. Critical temperature for the paramagnetic antiferromagnetic transition in the 3-D 
Hubbard model versus U. 
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Although the Monte Carlo results probably overestimate Tc somewhat, it 
appears that the effect is real. This implies that when U is reduced 
from infinity and charge fluctuations are allowed, magnetism is actually 
enhanced, contrary to what one might have expected. 

Finally, as mentioned before, the transition appears to be first-order 
for intermediate values of U. The theoretical predictions at both weak and 
strong coupling are for a continuous transition, which would imply the 
existence of two tricritical points if both the theories and the Monte Carlo 
results are correct in some regime. Clearly this neds to be further 
investigated in the future. 

4. RESULTS IN 2D 

In two dimensions, the Hubbard model cannot exhibit long-range 
order at finite temperatures since the symmetry that has to be broken (spin 
symmetry) is continuous. Thus, most questions of interest center around 
the nature of the ground state as a function of U, band filling and band 
structure. It is, however, also of interest to study correlation functions and 
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SOr, Tr) O.4 
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O~I ~ mO L~ I f~'~J'~ ~ ~ ~ ' 1  I 
2 U 4 ~ 8  

1/36 1126 1116 Ill0 I/B 
I /N 

Fig. 10. Magnetic structure factor S(n, n ) /N  plotted versus 1/N . The extrapolation to 
N--,  oo gives the antiferromagnetic order parameter  squared, m 2. The results for U =  ov 
correspond to the Heisenberg model and were obtained from Ref. 17. The inset shows m ver- 
sus U and the Hart ree-Fock predictions (HF). 
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susceptibilities at finite temperature since they will determine what type of 
order will set in in an array of weakly coupled planes (quasi-2-D system). 

A variety of studies have been performed in two dimensions, and 
more are in progress. For the model with only nearest-neighbor hopping 
on a square lattice, simulations indicate that there is long-range 
antiferromagnetic order for all U, although substantially reduced from 
mean field predictions. (7,s) Some results are shown in Fig. 10. (s) For non- 
half-filled band cases, simulations show that there is no antiferromagnetic 
order for p as large as 0.9, suggesting that only p =  1 exhibits a 
magnetically ordered ground state. (s) There is also no evidence of 
ferromagnetism for a wide range of band fillings and interactions. Figure 11 
shows the ground-state phase diagram predicted by mean-field theory and 
the phase diagram that emerges from simulations. Although the mean-field 
one exhibits a much richer structure, it unfortunately does not seem to 
describe the properties of the Hubbard Hamiltonian. 

We have also performed studies with a modified band structure with 
nearest and next-nearest neighbor hopping. (is) Here, the simulations 
indicate that, in the �89 band case antiferromagnetic, order sets in at a 
finite value of U, not too far from the mean-field predictions. There are 
ferromagnetic correlations for small lattices in the regime predicted by 
mean-field theory but they become weaker as the lattice size increases, and 
the results suggest that there is no ferromagnetism in this case either. 

Concerning superconducting pairing correlations, results of 
simulations indicate that triplet pairing is suppressed by a repulsive interac- 
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Fig. 11. Ground state phase diagram of the two-dimensional repulsive Hubbard model on a 
square lattice with nearest-neighbor-hopping only. (a) Mean-field prediction. A, F, and P 
denote antiferromagnetic, ferromagnetic, and paramagnetic phases, respectively. (b) Conjec- 
tured phase diagram from Monte Carlo results. 
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Fig. 12. Pairing susceptibility in the attractive Hubbard model versus U, indicating the ten- 
dency toward a superconducting state: 4 x 4 lattice, /7 = 3. The full line represents results 
obtained by summing a selected class of diagrams in perturbation theory in U for the same 
size lattice as the simulation results (points), the dashed line the RPA predictions. (a) Nearest- 
neighbor hopping only. (b) Nearest and next-nearest neighbor hopping. 

tion but anisotropic singlet pairing correlations are enhanced. (8'19/ These 
results are surprising since they are in contradiction with theoretical predic- 
tions, and may have relevance to the interpretation of the behavior of 
heavy fermion materials. 

A detailed study of pairing correlations in the attractive Hubbard 
model (U<0)  has recently been performed. (2~ Simulation results were 
compared with perturbation theory results obtained by summing a selected 
class of diagrams for small lattices. Some results are shown in Fig. 12. The 
theoretical calculation including the set of diagrams that gave the best 
agreement with Monte Carlo was then used to calculate the supercon- 
ducting transition temperature as a function of U for different band struc- 
tures. The results predict an enormous enhancement of the supercon- 
ducting transition temperature for particular parameters, which could have 
important experimental consequences. 

5.  R E S U L T S  I N  1 D  

Simulations in 1D have been performed mainly using the world-line 
algorithm on the Hubbard model with on-site interaction U and nearest- 
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neighbor interaction V. In the half-filled band case, the transition lines 
between charge density wave (CDW) and spin density wave (SDW) 
phases (21/and for the condensation transition (22t have been mapped out in 
detail Figure 13 shows the results together with predictions from pertur- 
bation theory. For the CDW-SDW transition, weak and strong coupling 
perturbation theory predict the same transition line U = 2 V and continuous 
and first-order transitions, respectively. Simulations show that the trans- 
ition line deviates from the U = 2 V line toward larger V, and that the trans- 
ition is continuous for U< 3 and first-order beyond. For the condensation 
transition, strong coupling theory predicts a first-order transition in both 
limits U--+ oo and U ~  -c~, and simulations show it is first-order for all 
values of U, and that it agrees with perturbation theory for [UF > 4. 

Other simulations of the 1-D Hubbard model have studied the inter- 
play between 2k F and 4kv instabilities (kF=fermi  wave vector) as a 
function of U, V, and band filling, which is of interest in connection with 
X-ray diffuse scattering experiments in quasi-l-D materials. (23) Simulations 
showed that coexistence of 2kv and 4kv instabilities, as observed in some 
experiments, only existed in a limited range of parameters and that the 2kF 
instability mainly appears in a charge-transfer susceptibility, while the 4kv 
instability appears in the ordinary change susceptibility. This is an 
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Fig. 13. Ground state phase diagram of the one-dimensional extended Hubbard model in the 
half-filled band sectors. The C D W - S D W  transition is continuous for small U and first-order 
for large U ( U >  3), and deviates slightly from the U =  2V line toward the CDW phase. The 
condensation transition is always first-order. The dashed lines are results from various strong 
coupling expansions. 
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unexpected result of some experimental relevance since it indicates which 
phonon degrees of freedom couple to the instabilities. Another unexpected 
result was that a small on-site repulsion U can enhance the 2kv instability, 
with relevance, for example, to the properties of polyacetylene/24) Current 
work focuses on the effect of disorder on various instabilities in the 1D 
Hubbard model. 

6. S U M M A R Y  A N D  PROSPECTS 

We have discussed some results of simulations of the Hubbard model 
in one, two, and three dimensions. Although the results become scarcer as 
we go up in dimensions, we have already learned quite a bit from 
simulations of this model. It is likely that simulations will allow us to gain 
a complete understanding of the Hubbard model, which is of interest since 
it is the simplest model of interacting fermions on a lattice. These results 
will be useful both as a reference point to understand more complicated fer- 
mion models for condensed matter systems and as benchmarks for testing 
approximation methods for interacting fermion systems. 

Several methodological problems of course remain to be solved or 
improved upon. One of the most important is an efficient fermion 
algorithm. Although the Hubbard model looks simpler than, for example, 
SU(3), it is in some sense more difficult, since fermions in the Hubbard 
model are everything, not just a perturbation on a background bose field. 
A "quenched approximation" would be meaningless for this model. Thus, it 
is likely that an algorithm that works for the Hubbard model will work for 
almost everything else, but that some algorithms that are useful, for exam- 
ple, in SU(3) cannot be applied to the Hubbard model. There are at 
present several fermion algorithms and new ones are being developed, and 
a critical comparison between algorithms needs to be performed. 

Other technical problems concern the difficulty of getting to very low 
temperature and very strong couplings, and that fact that negative fermion 
determinants do occur for non-half-filled band cases. Hopefully, progress in 
these aspects will also occur. 

If we remember that only 5 years ago the only known way to obtain 
reliable numerical answers for the Hubbard model was through exact 
diagonalization, which for a 64-site Hubbard model would take ~ 1020 
Cray hr, it is clear that significant progress has occurred (simulations for 
64 sites take ~1 Cray hr). It is likely that significant progress will continue 
in the next 5 years, although perhaps not at quite the same rate. 
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